Detection of Fake News Text Classification on COVID-19 Using Deep Learning Approaches

Author:

Bangyal Waqas Haider1ORCID,Qasim Rukhma1,Rehman Najeeb ur1ORCID,Ahmad Zeeshan1,Dar Hafsa2ORCID,Rukhsar Laiqa1ORCID,Aman Zahra1ORCID,Ahmad Jamil3ORCID

Affiliation:

1. Department of Computer Science, University of Gujrat, Pakistan

2. Department of Software Engineering, University of Gujrat, Pakistan

3. Professor Computer Science, Hazara University, Manshera, KPK, Pakistan

Abstract

A vast amount of data is generated every second for microblogs, content sharing via social media sites, and social networking. Twitter is an essential popular microblog where people voice their opinions about daily issues. Recently, analyzing these opinions is the primary concern of Sentiment analysis or opinion mining. Efficiently capturing, gathering, and analyzing sentiments have been challenging for researchers. To deal with these challenges, in this research work, we propose a highly accurate approach for SA of fake news on COVID-19. The fake news dataset contains fake news on COVID-19; we started by data preprocessing (replace the missing value, noise removal, tokenization, and stemming). We applied a semantic model with term frequency and inverse document frequency weighting for data representation. In the measuring and evaluation step, we applied eight machine-learning algorithms such as Naive Bayesian, Adaboost, K -nearest neighbors, random forest, logistic regression, decision tree, neural networks, and support vector machine and four deep learning CNN, LSTM, RNN, and GRU. Afterward, based on the results, we boiled a highly efficient prediction model with python, and we trained and evaluated the classification model according to the performance measures (confusion matrix, classification rate, true positives rate...), then tested the model on a set of unclassified fake news on COVID-19, to predict the sentiment class of each fake news on COVID-19. Obtained results demonstrate a high accuracy compared to the other models. Finally, a set of recommendations is provided with future directions for this research to help researchers select an efficient sentiment analysis model on Twitter data.

Publisher

Hindawi Limited

Subject

Applied Mathematics,General Immunology and Microbiology,General Biochemistry, Genetics and Molecular Biology,Modelling and Simulation,General Medicine

Cited by 68 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3