Segmentation for Multimodal Brain Tumor Images Using Dual-Tree Complex Wavelet Transform and Deep Reinforcement Learning

Author:

Liu Gang12,Li Xiaofeng3ORCID,Cai Yingjie4

Affiliation:

1. College of Computer Science and Technology, Harbin Engineering University, Harbin 150001, China

2. State Key Lab for Novel Software Technology, Nanjing University, Nanjing 210008, China

3. Department of Information Engineering, Heilongjiang International University, Harbin 150025, China

4. The First Psychiatric, Hospital of Harbin, Harbin 150056, China

Abstract

Image segmentation is an effective tool for computer-aided medical treatment, to retain the detailed features and edges of the segmented image and improve the segmentation accuracy. Therefore, a segmentation algorithm using deep reinforcement learning (DRL) and dual-tree complex wavelet transform (DTCWT) for multimodal brain tumor images is proposed. First, the bivariate concept in DTCWT is used to determine whether the image noise points belong to the real or imaginary region, and the noise probability is checked after calculation; second, the wavelet coefficients corresponding to the region where the noise is located are selected to transform the noise into normal pixel points by bivariate; then, the conditional probability of occurrence of marker points in the edge and center regions of the image is calculated with the target points, and the initial segmentation of the image is achieved by the known wavelet coefficients; finally, the segmentation framework is constructed using DRL, and the network is trained by loss function to optimize the segmentation results and achieve accurate image segmentation. The experiment was evaluated on BraTS2018 dataset, CQ500 dataset, and a hospital brain tumor dataset. The results show that the algorithm in this paper can effectively remove multimodal brain tumor image noise, and the segmented image has good retention of detail features and edges, and the segmented image has high similarity with the original image. The highest information loss index of the segmentation results is only 0.18, the image boundary error is only about 0.3, and F-value is high, which indicates that the proposed algorithm is accurate and can operate efficiently, and has practical applicability.

Funder

Natural Science Foundation of Heilongjiang Province

Publisher

Hindawi Limited

Subject

General Mathematics,General Medicine,General Neuroscience,General Computer Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3