Artificial Intelligence-Based Prediction Models for Optimal Design of Tuned Mass Dampers in Damped Structures Subjected to Different Excitations

Author:

Etedali Sadegh1,Bijaem Zohreh Khosravi2,Mollayi Nader3,Babaiyan Vahide3

Affiliation:

1. Department of Civil Engineering, Birjand University of Technology, P.O. Box 97175-569, Birjand, Iran

2. Department of Civil Engineering, Hormozan Institute of Higher Education, Birjand, Iran

3. Department of Computer Engineering, Birjand University of Technology, Birjand, Iran

Abstract

Tuned mass damper (TMD) is a type of energy absorbers that can mitigate the vibrations of the main system if its frequency and damping ratios are well adjusted. By adopting simple assumptions on the structure and loadings, many analytical and empirical relationships have been presented for the estimation of the parameters for TMDs. In this research, methods based on the artificial intelligence (AI) techniques are proposed for optimal tuning of the TMD parameters of the main damped-structure for three kinds of loadings: white-noise base acceleration, external white-noise force, and harmonic base acceleration. For this purpose, a dataset using the cuckoo search (CS) optimization algorithm is created. The performance of the proposed methods based on the radial basis function (RBF) neural network, feed-forward neural network (FFNN), adaptive neuro-fuzzy inference system (ANFIS), and random forest (RF) techniques are evaluated by some statistical indicators. The results show the proper performance of these methods for the optimal estimation of the TMD parameters. Overall, the ANFIS method results in best matching with the observed dataset. Moreover, the simulation results indicate that the TMD’s optimal frequency ratio is reduced, while its optimal damping ratio is increased, against the increase in the TMD mass ratio of the main structure subjected to harmonic base acceleration. This trend with a less slope is observed for the optimal frequency ratio of the TMD in the main structure subjected to external white-noise force; however, the optimal damping ratio of the TMD is independent of its mass ratio in this case. Similar results are obtained for the main structure subjected to white-noise base acceleration.

Publisher

World Scientific Pub Co Pte Lt

Subject

Applied Mathematics,Mechanical Engineering,Ocean Engineering,Aerospace Engineering,Building and Construction,Civil and Structural Engineering

Cited by 20 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3