Framework for Robust Design Optimization of Tuned Mass Dampers by Stochastic Subset Optimization

Author:

Khalid Mohd Aman1,Bansal Sahil1ORCID

Affiliation:

1. Department of Civil Engineering, Indian Institute of Technology Delhi, New Delhi 110016, India

Abstract

This study is focused on robust design optimization (RDO) of the tuned mass dampers (TMDs), which are widely used as a passive vibration controller in structural systems. The performance of the TMDs designed under the implicit assumption that all relevant system parameters (such as loading and structural characteristics) are deterministic is greatly affected by the inevitable inherent uncertainties in the system parameters. In this regard, a framework is proposed for the RDO of TMDs to determine its optimal solution which is less sensitive to system parameter variability. RDO is defined as a multi-objective optimization problem that aims to minimize the mean and variance of the performance function. In the case of multiple TMDs, the proposed framework uniquely avoids the presumption of their mass distribution, number, and placement location. In the proposed RDO framework, an augmented formulation is adopted wherein the design parameters are artificially introduced as uncertain variables with some prescribed probability density function (PDF) over the design space. The resulting optimization problem is solved using the stochastic subset optimization (SSO) and KN, a direct search optimization method. The effectiveness of the proposed framework is studied by analyzing four illustrative examples involving a single TMD attached to a single-degree-of-freedom (SDOF) structure, a single TMD attached to a multiple-degree-of-freedom (MDOF) structure, multiple TMDs attached to an MDOF structure, and an 80-story structure equipped with multiple TMDs.

Funder

Indian Institute of Technology Delhi

Science and Engineering Research Board, Government of India

Publisher

World Scientific Pub Co Pte Ltd

Subject

Applied Mathematics,Mechanical Engineering,Ocean Engineering,Aerospace Engineering,Building and Construction,Civil and Structural Engineering

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3