Stability of certain higher degree polynomials

Author:

Laishram Shanta1ORCID,Sarma Ritumoni2,Sharma Himanshu2

Affiliation:

1. Stat-Math Unit, Indian Statistical Institute, 7, S. J. S. Sansanwal Marg, New Delhi 110016, India

2. Department of Mathematics, Indian Institute of Technology Delhi, New Delhi 110016, India

Abstract

One of the interesting problems in arithmetic dynamics is to study the stability of polynomials over a field. A polynomial [Formula: see text] is stable over [Formula: see text] if irreducibility of [Formula: see text] implies that all its iterates are also irreducible over [Formula: see text], that is, [Formula: see text] is irreducible over [Formula: see text] for all [Formula: see text], where [Formula: see text] denotes the [Formula: see text]-fold composition of [Formula: see text]. In this paper, we study the stability of [Formula: see text] for [Formula: see text], [Formula: see text]. We show that for infinite families of [Formula: see text], whenever [Formula: see text] is irreducible, all its iterates are irreducible, that is, [Formula: see text] is stable. Under the assumption of explicit [Formula: see text]-conjecture, we further prove the stability of [Formula: see text] for the remaining values of [Formula: see text]. Also for [Formula: see text], if [Formula: see text] is reducible, then the number of irreducible factors of each iterate of [Formula: see text] is exactly [Formula: see text] for [Formula: see text].

Publisher

World Scientific Pub Co Pte Ltd

Subject

Algebra and Number Theory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3