Generalized Fermat equations: A miscellany

Author:

Bennett Michael A.1,Chen Imin2,Dahmen Sander R.3,Yazdani Soroosh4

Affiliation:

1. Department of Mathematics, University of British Columbia, Vancouver, BC, Canada V6T 1Z2, Canada

2. Department of Mathematics, Simon Fraser University, Burnaby, BC, Canada

3. Department of Mathematics, VU University Amsterdam, De Boelelaan 1081a, 1081 HV Amsterdam, The Netherlands

4. Department of Mathematics and Computer Science, University of Lethbridge, Lethbridge, AB, Canada T1K 3M4, Canada

Abstract

This paper is devoted to the generalized Fermat equation xp + yq = zr, where p, q and r are integers, and x, y and z are nonzero coprime integers. We begin by surveying the exponent triples (p, q, r), including a number of infinite families, for which the equation has been solved to date, detailing the techniques involved. In the remainder of the paper, we attempt to solve the remaining infinite families of generalized Fermat equations that appear amenable to current techniques. While the main tools we employ are based upon the modularity of Galois representations (as is indeed true with all previously solved infinite families), in a number of cases we are led via descent to appeal to a rather intricate combination of multi-Frey techniques.

Publisher

World Scientific Pub Co Pte Lt

Subject

Algebra and Number Theory

Cited by 23 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. On the solutions of some Lebesgue–Ramanujan–Nagell type equations;International Journal of Number Theory;2024-04-06

2. Number of solutions to a special type of unit equations in two unknowns;American Journal of Mathematics;2024-04

3. Reverse engineered Diophantine equations over ;Journal de théorie des nombres de Bordeaux;2024-03-04

4. An extension of Aigner’s theorem;Monatshefte für Mathematik;2023-11-18

5. Stability of certain higher degree polynomials;International Journal of Number Theory;2023-10-04

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3