A 32 nm Read Disturb-free 11T SRAM Cell with Improved Write Ability

Author:

Mansore S. R.1,Gamad R. S.1,Mishra D. K.1

Affiliation:

1. Electronics and Instrumentation Engineering Department, Shri. G. S. Institute of Technology and Science, Indore 452003, India

Abstract

Data stability, write ability and leakage power are major concerns in submicron static random access memory (SRAM) cell design. This paper presents an 11T SRAM cell with differential write and single-ended read. Proposed cell offers improved write ability by interrupting its ground connection during write operation. Separate read buffer provides disturb-free read operation. Characteristics are obtained from HSPICE simulation using 32[Formula: see text]nm high-performance predictive technology model. Simulation results show that the proposed cell achieves 4.5[Formula: see text] and 1.06[Formula: see text] higher read static noise margin (RSNM) as compared to conventional 6T (C6T) and PNN-based 10T cells, respectively, at 0.4[Formula: see text]V. Write static noise margin (WSNM) of the proposed design is 1.65[Formula: see text], 1.71[Formula: see text] and 1.77[Formula: see text] larger as compared to those of C6T, PPN-based 10T and PNN-based 10T cells, respectively, at 0.4V. Write “1” delay of the proposed cell is 0.108[Formula: see text] and 0.81[Formula: see text] as those of PPN10T and PNN10T cells, respectively. Proposed circuit consumes 1.40[Formula: see text] lesser read power as compared to PPN10T cell at 0.4[Formula: see text]V. Leakage power of the proposed cell is 0.35[Formula: see text] of C6T cell at 0.4[Formula: see text]V. Proposed 11T cell occupies 1.65[Formula: see text] larger area as compared to that of conventional 6T.

Publisher

World Scientific Pub Co Pte Lt

Subject

Electrical and Electronic Engineering,Hardware and Architecture,Electrical and Electronic Engineering,Hardware and Architecture

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. WITHDRAWN: Low Leakage Variation SRAM Cell with Improved Stability for IOT Applications;2024-02-21

2. A Comparative Performance Analysis of 10 T and 11 T SRAM Cells;Lecture Notes in Electrical Engineering;2024

3. Improved Stability for Robust and Low-Power SRAM Cell using FinFET Technology;Journal of Circuits, Systems and Computers;2023-10-28

4. A single ended, single port configuration based 9 T SRAM cell for stability enhancement;Physica Scripta;2023-10-23

5. A Highly Stable 10T SRAM Cell for Low Power Applications;2022 OPJU International Technology Conference on Emerging Technologies for Sustainable Development (OTCON);2023-02-08

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3