A Digital On-Line Monitor for Detecting Intermittent Resistance Faults at Board Level

Author:

Ebrahimi Hassan1ORCID,Kerkhoff Hans G.1

Affiliation:

1. Testable Design and Test of Integrated Systems (TDT) Group, Centre for Telematics and Information Technology (CTIT), University of Twente, Enschede, The Netherlands

Abstract

The reliability of board-level data communications intensively depends on the reliability of interconnections on a board. One of the most challenging interconnections reliability threats is intermittent resistive faults (IRFs). Detecting such faults is a major challenge. The main reason is the random behavior of these faults. They may occur randomly in time, duration and amplitude. The occurrence rate can vary from a few nanoseconds to months. This paper investigates IRF detection at the board level by introducing a new digital in situ IRF monitor. Hardware-based fault injection has been used to validate the proposed IRF monitor. As case studies, two widely used on-board transmission protocols namely the Universal Asynchronous Receiver Transmitter (UART) and the Serial Peripheral Interface bus (SPI), have been used. In addition, one fault management framework, based on the IJTAG standard, has been implemented to collect and characterize information from the monitors. The experimental results show that the proposed monitor is effective in detecting IRFs at the board level.

Publisher

World Scientific Pub Co Pte Lt

Subject

Electrical and Electronic Engineering,Hardware and Architecture,Electrical and Electronic Engineering,Hardware and Architecture

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. A Statistical Model-Based Approach for Reproducing Intermittent Faults in Electrical Connectors under Varying Vibration Loading Conditions;Journal of Circuits, Systems and Computers;2024-02-22

2. Embedded Test Instrument for Intermittent Resistive Fault Detection at Chip Level and Its Reuse at Board Level;2021 24th International Symposium on Design and Diagnostics of Electronic Circuits & Systems (DDECS);2021-04-07

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3