Improving ILP via Fused In-Order Superscalar and VLIW Instruction Dispatch Methods

Author:

Hou Yumin1ORCID,Wang Xu1,Fu Jiawei1,Ma Junping1,He Hu1ORCID,Yang Xu2

Affiliation:

1. Institute of Microelectronics, Tsinghua University, Beijing 100084, P. R. China

2. School of Software, Beijing Institute of Technology, Beijing 100081, P. R. China

Abstract

In order to expand the computation capability of digital signal processing on a General Purpose Processor (GPP), we propose a fused microarchitecture that improves Instruction Level Parallelism (ILP) by supporting both in-order superscalar and very long instruction word (VLIW) dispatch methods in a single pipeline. This design is based on ARMv7-A&R Instruction Set Architecture (ISA). To provide a performance comparison, we first design an in-order superscalar processor, considering that ARM GPPs always adopt superscalar approaches. And then we expand VLIW dispatch method based on this processor, to realize the fused microarchitecture. The two designs are both evaluated on the Xilinx 7-series FPGA (XC7K325T-2FFG900C), using Xilinx Vivado design suite. The results show that, compared with the superscalar processor, the processor working under VLIW mode can improve the performance by 15% and 8%, respectively, when running EEMBC and DSPstone benchmarks. We also run the two benchmarks on ARM Cortex-A9 processor, which is integrated in the Zynq-7000 AP SoC device on Xilinx ZC706 evaluation board. The processor in VLIW mode shows 44% and 30% performance improvements than ARM Cortex-A9. The fused microarchitecture adopts a combined bimodal and PAp branch prediction method. This method achieves 93.7% prediction accuracy with limited hardware overhead.

Funder

National Natural Science Foundation of China

Publisher

World Scientific Pub Co Pte Lt

Subject

Electrical and Electronic Engineering,Hardware and Architecture,Electrical and Electronic Engineering,Hardware and Architecture

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3