Novel Implementation Approach with Enhanced Memory Access Performance of MGS Algorithm for VLIW Architecture

Author:

Najoui Mohamed1ORCID,Hatim Anas2,Belkouch Said3,Chabini Noureddine4

Affiliation:

1. E2SN Team, ENSET-Rabat, Mohamed V University, Rabat, Morocco

2. TIM Team, ENSA Marrakech, Cadi Ayyad University, Marrakech, Morocco

3. LGECOS Lab, ENSA-Marrakech, University of Cadi Ayyad, Marrakech, Morocco

4. Department of Electrical and Computer Engineering, Royal Military College of Canada, Kingston, ON, Canada

Abstract

Modified Gram–Schmidt (MGS) algorithm is one of the most-known forms of QR decomposition (QRD) algorithms. It has been used in many signal and image processing applications to solve least square problem and linear equations or to invert matrices. However, QRD is well-thought-out as a computationally expensive technique, and its sequential implementation fails to meet the requirements of many real-time applications. In this paper, we suggest a new parallel version of MGS algorithm that uses VLIW (Very Long Instruction Word) resources in an efficient way to get more performance. The presented parallel MGS is based on compact VLIW kernels that have been designed for each algorithm step taking into account architectural and algorithmic constraints. Based on instruction scheduling and software pipelining techniques, the proposed kernels exploit efficiently data, instruction and loop levels parallelism. Additionally, cache memory properties were used efficiently to enhance parallel memory access and to avoid cache misses. The robustness, accuracy and rapidity of the introduced parallel MGS implementation on VLIW enhance significantly the performance of systems under severe rea-time and low power constraints. Experimental results show great improvements over the optimized vendor QRD implementation and the state of art.

Publisher

World Scientific Pub Co Pte Lt

Subject

Electrical and Electronic Engineering,Hardware and Architecture,Electrical and Electronic Engineering,Hardware and Architecture

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3