Affiliation:
1. State Key Laboratory of Complex System, Intelligent Control and Decision, School of Automation, Beijing Institute of Technology, Beijing 100081, P. R. China
Abstract
This research provides a novel approach for detecting multi-legged robot actuator faults. The most significant concept is to design the Fault Diagnosis Generative Adversarial Network (FD-GAN) to fully adapt to the fault diagnosis problem with insufficient data. We found that it is difficult for methods based on classification and prediction to learn failure patterns without enough data. A straightforward solution is to use massive amounts of normal data to drive the diagnostic model. We introduce frequency-domain information and fuse multi-sensor data to increase the features and expand the difference between normal data and fault data. A GAN-based framework is designed to calculate the probability that the enhanced data belongs to the normal category. It uses a generator network as a feature extractor, and uses a discriminator network as a fault probability evaluator, which creates a new use of GAN in the field of fault diagnosis. Among the many learning strategies of GAN, we find that a key point that can distinguish the two types of data is to use the hidden layer noise with appropriate discrimination as the excitation. We also design a fault location method based on binary search, which greatly improves the search efficiency and engineering value of the entire method. We have conducted a lot of experiments to prove the diagnostic effectiveness of our architecture in various road conditions and working modes. We compared FD-GAN with popular diagnostic methods. The results show that our method has the highest accuracy and recall rate.
Funder
National Key Research and Development Program of China
National Natural Science Foundation of China
Publisher
World Scientific Pub Co Pte Ltd
Subject
Control and Optimization,Aerospace Engineering,Automotive Engineering,Control and Systems Engineering
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献