Structural topic modeling-based systematic review for service robots’ fault diagnosis: content, popularity and regional differences

Author:

Wang ZheyuORCID,Dong Chengju,Qian Jie,Duan ChaoqunORCID,Sheng BoORCID,Wang YuanhangORCID

Abstract

Abstract The market for service robots is expanding as labor costs continue to rise. Faced with intricate working environments, fault detection and diagnosis are crucial to ensure the proper functioning of service robots. The objective of this review is to systematically investigate the realm of service robots’ fault diagnosis through the application of Structural Topic Modeling. A total of 289 papers were included, culminating in ten topics, including advanced algorithm application, data learning-based evaluation, automated equipment maintenance, actuator diagnosis for manipulator, non-parametric method, distributed diagnosis in multi-agent systems, signal-based anomaly analysis, integrating complex control framework, event knowledge assistance, mobile robot particle filtering method. These topics spanned service robot hardware and software failures, diverse service robot systems, and a range of advanced algorithms for fault detection in service robots. Asia-Pacific, Europe, and the Americas, recognized as three pivotal regions propelling the advancement of service robots, were employed as covariates in this review to investigate regional disparities. The review found that current research tends to favor the use of artificial intelligence (AI) algorithms to address service robots’ complex system faults and vast volumes of data. The topics of algorithms, data learning, automated maintenance, and signal analysis are advancing with the support of AI, gaining increasing popularity as a burgeoning trend. Additionally, variations in research focus across different regions were found. The Asia-Pacific region tends to prioritize algorithm-related studies, while Europe and the Americas show a greater emphasis on robot safety issues. The integration of diverse technologies holds the potential to bring forth new opportunities for future service robot fault diagnosis.Simultaneously, regional standards about data, communication, and other aspects can streamline the development of methods for service robots’ fault diagnosis.

Funder

Shanghai Pujiang Program

Guangdong Provincial Key Laboratory of Electronic Information Products Reliability Technology

National Natural Science Foundation of China

Publisher

IOP Publishing

Reference108 articles.

1. service robots Definition;International Federation of Robotics (IFR)

2. Research status and development trends of the service robotic technology;TianMiao;Sci. Sin. Informationis,2012

3. Fault detection and state estimation in robotic automatic control using machine learning;Natarajan;Array,2023

4. Robot remote monitoring and fault diagnosis based on industrial internet of things;Zhou;Math. Probl. Eng.,2022

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3