Affiliation:
1. State Key Laboratory for Hydroscience and Engineering, Tsinghua University, Beijing 100084, China
2. School of Power and Mechanical Engineering, Wuhan University, Hubei 430072, China
Abstract
For accurate simulations of wall-bounded turbulent cavitating flows, the present paper proposed a partially averaged Navier–Stokes (PANS) method derived from the [Formula: see text]-[Formula: see text] turbulence model. Transient cavitating vortical flows around a NACA66 hydrofoil were simulated by using the [Formula: see text]-[Formula: see text] PANS model with various filter parameters ([Formula: see text] and [Formula: see text], while [Formula: see text]) and a mass transfer cavitation model based on the Rayleigh–Plesset equation. Compared with the available experimental data, the [Formula: see text]-[Formula: see text] PANS model with [Formula: see text] can accurately reproduce the cavitation evolution with more complicated structures due to the reduction in the predicted eddy viscosity. Further analyses, using the vorticity transport equation, indicate that the transition of cavitation structure from two dimension to three dimension is associated with strong vortex–cavitation interaction, where vortex stretching and dilation may play a major role. Therefore, the [Formula: see text]-[Formula: see text] PANS model with the filter parameter of [Formula: see text] is an effective method to numerically predict the transient cavitating vortical flows around hydrofoils. The results obtained in this paper are helpful to provide a physical insight into the mechanisms of cavitation shedding dynamics.
Publisher
World Scientific Pub Co Pte Lt
Subject
Condensed Matter Physics,Statistical and Nonlinear Physics
Cited by
16 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献