Numerical investigations into supercavitating flows and hydrodynamic characteristics of a heaving hydrofoil

Author:

Zhi Yuchang1,Zhang Zhen2,Huang Renfang3,Qiu Rundi3,Wang Yiwei3

Affiliation:

1. School of Aeronautics and Astronautics, Sun Yat-Sen University, Guangzhou 510275, China

2. State Key Laboratory of Mechanical Behavior and System Safety of Traffic Engineering Structures, Shijiazhuang Tiedao University, Shijiazhuang 050043, China

3. Key Laboratory for Mechanics in Fluid Solid Coupling Systems, Institute of Mechanics, Chinese Academy of Sciences, Beijing 100190, China

Abstract

This paper presents the effects of heaving motions on the hydrodynamic characteristics, supercavitating flow regimes and vortex structures for a two-dimensional (2D) supercavitating hydrofoil. The sinusoidal heaving motion of the supercavitating hydrofoil is realized by overset grid technology. The lift coefficient, drag coefficient, supercavitating flow regime and vortex structures around the supercavitating hydrofoil are analyzed and compared among different amplitudes of the heaving motion. The predicted cavities and the hydrodynamic characteristics are in good accordance with the experiments at a stationary state. The lift coefficient and drag coefficient of the heaving hydrofoil present a sinusoidal law, which is related to the effective angle of attack. The heaving motion would affect the cavity length and its thickness. The greater the heaving amplitude, the greater the difference in cavity pattern at different heaving positions. The cavity variation would affect the shear layer and thus change the vortex shedding characteristics, which are different from those at a stationary state.

Funder

National Natural Science Foundation of China

The Youth Innovation Promotion Association CAS

Science and Technology on Water Jet Propulsion Laboratory

Publisher

World Scientific Pub Co Pte Ltd

Subject

Condensed Matter Physics,Statistical and Nonlinear Physics

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3