Numerical Simulation of Cavitation Around a Hydrofoil and Evaluation of a RNG κ-ε Model

Author:

Zhou Lingjiu1,Wang Zhengwei2

Affiliation:

1. College of Water Conservancy and Civil Engineering, China Agricultural University, Beijing, China 100083

2. Department of Thermal Engineering, Tsinghua University, Beijing, China 100084

Abstract

Cavitating flow around a hydrofoil was simulated using a transport equation-based model with consideration of the influence of noncondensable gases. The cavity length and the pressure distributions on the suction side can be well predicted for stable cavities using the standard renormalization-group (RNG) κ-ε turbulence model with proper noncondensable gas mass fraction. The unstable cavity shedding at lower cavitation numbers was not well predicted by the standard RNG κ-ε turbulence model. A modified RNG κ-ε turbulence model was evaluated by comparing the calculated spatial-temporal pressure distributions on the suction wall with experimental data. The results showed that the predicted cavity growth and shedding cycle and its frequency agree well with the experimental data. However, the pressure increase caused by interaction of the reentrant flow and the cavity interface is overestimated, which caused the time-averaged pressure on the front part of the hydrofoil to be overestimated. The time-averaged pressure on the rear of the hydrofoil was low because the small cavity shedding on the rear part of the cavity was not predicted.

Publisher

ASME International

Subject

Mechanical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3