Gamma-ray burst afterglow blast waves

Author:

van Eerten Hendrik1

Affiliation:

1. Department of Physics, University of Bath, Claverton Down, Bath BA2 7AY, UK

Abstract

The various stages of baryonic gamma-ray burst (GRB) afterglow blast waves are reviewed. These are responsible for the afterglow emission from which much of our understanding of gamma-ray bursts derives. Initially, the blast waves are confined to the dense medium surrounding the burster (stellar envelope or dense wind), giving rise to a jet-cocoon structure. A massive ejecta is released and potentially fed by ongoing energy release from the burster and a forward–reverse shock system is set up between ejecta and ambient density. Ultimately the blast wave spreads sideways and slows down, and the dominant afterglow emission shifts from X-rays down to radio. Over the past years significant progress has been made both observationally and theoretically/numerically in our understanding of these blast waves, unique in the universe due to their often incredibly high initial Lorentz factors of 100–1000. The recent discovery of a short gamma-ray burst counterpart to a gravitational wave detection (GW 170817) brings the promise of a completely new avenue to explore and constrain the dynamics of gamma-ray burst blast waves.

Publisher

World Scientific Pub Co Pte Lt

Subject

Space and Planetary Science,Astronomy and Astrophysics,Mathematical Physics

Cited by 19 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. The Gravitational Wave AfterglowPy Analysis (GWAPA) webtool;Research Notes of the AAS;2024-01-19

2. Gama-ışın Patlamalarının Ardıl Işınımlarının Fiziksel Parametrelerinin Belirlenmesi;Turkish Journal of Astronomy and Astrophysics;2023-12-31

3. Photometric redshift estimation for gamma-ray bursts from the early Universe;Monthly Notices of the Royal Astronomical Society;2023-10-04

4. Radio data challenge the broadband modelling of GRB 160131A afterglow;Astronomy & Astrophysics;2022-01-27

5. gamma: a new method for modelling relativistic hydrodynamics and non-thermal emission on a moving mesh;Monthly Notices of the Royal Astronomical Society;2021-12-02

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3