Distribution of the number of peaks within a long gamma-ray burst: The full Fermi/GBM catalogue

Author:

Maccary R.ORCID,Maistrello M.ORCID,Guidorzi C.ORCID,Sartori M.ORCID,Amati L.ORCID,Bazzanini L.ORCID,Bulla M.ORCID,Camisasca A. E.ORCID,Ferro L.ORCID,Frontera F.ORCID,Tsvetkova A.ORCID

Abstract

Context. The dissipation process responsible for the long gamma-ray burst (GRB) prompt emission and the kind of dynamics that drives the release of energy as a function of time are still key open issues. We recently found that the distribution of the number of peaks per GRB is described by a mixture of two exponentials, suggesting the existence of two behaviours that turn up as peak-rich and peak-poor time profiles. Aims. Our aims are to study the distribution of the number of peaks per GRB of the entire catalogue of about 3000 GRBs observed by the Fermi Gamma-ray Burst Monitor (GBM) and to make a comparison with previous results obtained from other catalogues. Methods. We identified GRB peaks using the MEPSA code and modelled the resulting distribution following the same procedure that was adopted in the previous analogous investigation. Results. We confirm that only a mixture of two exponentials can model the distribution satisfactorily, with model parameters that fully agree with those found from previous analyses. In particular, we confirm that (21 ± 4)% of the observed GRBs are peak-rich (8 ± 1 peaks per GRB on average), while the remaining 80% are peak-poor (2.12 ± 0.10 peaks per GRB on average). Conclusions. We confirm the existence of two different components, peak-poor and peak-rich GRBs, that make up the observed GRB populations. Together with previous analogous results from other GRB catalogues, these results provide compelling evidence that GRB prompt emission is governed by two distinct regimes.

Publisher

EDP Sciences

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3