Scaling relations for gamma-ray burst afterglow light curves and centroid motion independent of jet structure and dynamics

Author:

van Eerten Hendrik J1ORCID,Ryan Geoffrey S2ORCID

Affiliation:

1. Physics Department, University of Bath , Claverton Down, Bath BA2 7AY , UK

2. Perimeter Institute for Theoretical Physics , Waterloo, Ontario N2L 2Y5 , Canada

Abstract

ABSTRACT Models for gamma-ray burst afterglow dynamics and synchrotron spectra are known to exhibit various scale invariances, owing to the scale-free nature of fluid dynamics and the power-law shape of synchrotron spectra. Since GRB 170817A, off-axis jet models including a lateral energy structure in the initial outflow geometry have gained in prominence. Here, we demonstrate how the scale invariance for arbitrary jet structure and dynamical stage can be expressed locally as a function of jet temporal light-curve slope. We provide afterglow flux expressions and demonstrate their use to quickly assess the physical implications of observations. We apply the scaling expressions to the Swift X-ray Telescope sample, which shows a spread in observed fluxes, binned by light-curve slope at time of observation, that increases with increasing light-curve slope. According to the scaling relations, this pattern is inconsistent with a large spread in environment densities if these were the dominant factor determining the variability of light curves. We further show how the late deep Newtonian afterglow stage remains scale-invariant but adds distinct spectral scaling regimes. Finally, we show that for given jet structure a universal curve can be constructed of the centroid offset, image size, and ellipticity (that can be measured using very large baseline interferometry) versus observer angle, in a manner independent of explosion energy and circumburst density. Our results apply to any synchrotron transient characterized by a release of energy in an external medium, including supernova remnants, kilonova afterglows, and soft gamma-repeater flares.

Publisher

Oxford University Press (OUP)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3