Scaling Analysis of Phase Fluctuations of Brain Networks in Dynamic Constrained Object Manipulation

Author:

Fu Rongrong1,Wang Han1,Han Mengmeng1,Han Dongying2,Sun Jiedi3

Affiliation:

1. Measurement Technology and Instrumentation Key Lab of Hebei Province, Department of Electrical Engineering, Yanshan University, Qinhuangdao, Hebei, P. R. China

2. School of Vehicles and Energy, Yanshan University, Qinhuangdao, Hebei, P. R. China

3. School of Information Science and Engineering, Yanshan University, Qinhuangdao, Hebei, P. R. China

Abstract

In this study, we investigated the dynamic properties of oscillatory activities in the scalp electro-encephalographs (EEGs) of 20 participants involved in a novel dynamic manipulating task using a physical interface and a virtual feedback. The complexity of such a task a rises from the unexpected relationship between the magnitude of the motion and the feedback. The characterization of complex patterns arising from EEG is an important problem in identifying different mental intentions. We proposed a scaling analysis of phase fluctuation in the scalp EEG to discriminate the network states related to different EEG patterns, which correspond to manipulating the task with right or left movement intention. These intentions are generated while the participant is engaged in such a complex task. The phase characterization method was used to calculate the instantaneous phase from the operational EEG. Then, functional brain networks (FBNs) of 20 subjects based on the task-related EEG were constructed by phase synchronization. The degree features representing the structures and scaling components of brain networks are sensitive to the EEG patterns with left or right motor intention. The correlation between features and mental intentions was investigated by discriminant analysis. For 20 subjects, the average accuracy of state detection is [Formula: see text], and the average mean-squared error (MSE) is [Formula: see text]. The brain state depicted by the results is related to high awareness, the phase characterization is of the effectiveness in EEG processing and FBN construction and the difference of control intentions can be explored by the phase characterization method. This finding may be relevant to understanding some neuronal mechanisms underlying the attention and some applications of closed-loop control for the safety operation of tools.

Funder

National Natural Science Foundation of China

Natural Science Foundation of Hebei Province

China Postdoctoral Science Foundation

Hebei Province Funding Project for Returned Overseas Scholar

Publisher

World Scientific Pub Co Pte Lt

Subject

Computer Networks and Communications,General Medicine

Cited by 16 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3