A Review of Techniques for Detection of Movement Intention Using Movement-Related Cortical Potentials

Author:

Shakeel Aqsa1,Navid Muhammad Samran1,Anwar Muhammad Nabeel1,Mazhar Suleman2,Jochumsen Mads3,Niazi Imran Khan345

Affiliation:

1. Human Systems Lab, Department of Biomedical Engineering and Sciences, School of Mechanical and Manufacturing Engineering, National University of Sciences and Technology (NUST), Islamabad 44000, Pakistan

2. BiSMiL Lab, Computer Science Department, Information Technology University, Lahore 54000, Pakistan

3. Center for Sensory-Motor Interaction, Department of Health Science and Technology, Aalborg University, 9100 Aalborg, Denmark

4. Center for Chiropractic Research, New Zealand College of Chiropractic, 1060 Auckland, New Zealand

5. Faculty of Health & Environmental Sciences, Health & Rehabilitation Research Institute, Auckland University of Technology, 1010 Auckland, New Zealand

Abstract

The movement-related cortical potential (MRCP) is a low-frequency negative shift in the electroencephalography (EEG) recording that takes place about 2 seconds prior to voluntary movement production. MRCP replicates the cortical processes employed in planning and preparation of movement. In this study, we recapitulate the features such as signal’s acquisition, processing, and enhancement and different electrode montages used for EEG data recoding from different studies that used MRCPs to predict the upcoming real or imaginary movement. An authentic identification of human movement intention, accompanying the knowledge of the limb engaged in the performance and its direction of movement, has a potential implication in the control of external devices. This information could be helpful in development of a proficient patient-driven rehabilitation tool based on brain-computer interfaces (BCIs). Such a BCI paradigm with shorter response time appears more natural to the amputees and can also induce plasticity in brain. Along with different training schedules, this can lead to restoration of motor control in stroke patients.

Publisher

Hindawi Limited

Subject

Applied Mathematics,General Immunology and Microbiology,General Biochemistry, Genetics and Molecular Biology,Modelling and Simulation,General Medicine

Cited by 81 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3