A Spatio-Temporal Method for Extracting Gamma-Band Features to Enhance Classification in a Rapid Serial Visual Presentation Task

Author:

Xie Ping1,Hao Shencai1,Zhao Jing1,Liang Zhenhu1,Li Xiaoli2

Affiliation:

1. Key Laboratory of Intelligent Rehabilitation and Neromodulation of Hebei Province, School of Electrical Engineering, Yanshan University, Qinhuangdao 066004, P. R. China

2. State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing 100875, P. R. China

Abstract

Rapid serial visual presentation (RSVP) is a type of electroencephalogram (EEG) pattern commonly used for target recognition. Besides delta- and theta-band responses already used for classification, RSVP task also evokes gamma-band responses having low amplitude and large individual difference. This paper proposes a filter bank spatio-temporal component analysis (FBSCA) method, extracting spatio-temporal features of the gamma-band responses for the first time, to enhance the RSVP classification performance. Considering the individual difference in time latency and responsive frequency, the proposed FBSCA method decomposes the gamma-band EEG data into sub-components in different time–frequency-space domains and seeks the weight coefficients to optimize the combinations of electrodes, common spatial pattern (CSP) components, time windows and frequency bands. Two state-of-the-art methods, i.e. hierarchical discriminant principal component analysis (HDPCA) and discriminative canonical pattern matching (DCPM), were used for comparison. The performance was evaluated in [Formula: see text] cross validations using a public dataset. Study results showed that the FBSCA method outperformed the other methods regardless of number of training trials. These results suggest that the proposed FBSCA method can enhance the RSVP classification.

Funder

the National Natural Science Foundation of China

the Natural Science Foundation of Hebei Province

Publisher

World Scientific Pub Co Pte Ltd

Subject

Computer Networks and Communications,General Medicine

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3