A Method based on Evolutionary Algorithms and Channel Attention Mechanism to Enhance Cycle Generative Adversarial Network Performance for Image Translation

Author:

Xue Yu1,Zhang Yixia1,Neri Ferrante2

Affiliation:

1. School of Software, Nanjing University of Information Science and Technology, Nanjing 210044, P. R. China

2. NICE Research Group, Department of Computer Science, University of Surrey, Stag Hill Campus, Guildford GU2 7XH, UK

Abstract

A Generative Adversarial Network (GAN) can learn the relationship between two image domains and achieve unpaired image-to-image translation. One of the breakthroughs was Cycle-consistent Generative Adversarial Networks (CycleGAN), which is a popular method to transfer the content representations from the source domain to the target domain. Existing studies have gradually improved the performance of CycleGAN models by modifying the network structure or loss function of CycleGAN. However, these methods tend to suffer from training instability and the generators lack the ability to acquire the most discriminating features between the source and target domains, thus making the generated images of low fidelity and few texture details. To overcome these issues, this paper proposes a new method that combines Evolutionary Algorithms (EAs) and Attention Mechanisms to train GANs. Specifically, from an initial CycleGAN, binary vectors indicating the activation of the weights of the generators are progressively improved upon by means of an EA. At the end of this process, the best-performing configurations of generators can be retained for image generation. In addition, to address the issues of low fidelity and lack of texture details on generated images, we make use of the channel attention mechanism. The latter component allows the candidate generators to learn important features of real images and thus generate images with higher quality. The experiments demonstrate qualitatively and quantitatively that the proposed method, namely, Attention evolutionary GAN (AevoGAN) alleviates the training instability problems of CycleGAN training. In the test results, the proposed method can generate higher quality images and obtain better results than the CycleGAN training methods present in the literature, in terms of Inception Score (IS), Fréchet Inception Distance (FID) and Kernel Inception Distance (KID).

Funder

National Natural Science Foundation of China

Natural Science Foundation of Jiangsu Province

Publisher

World Scientific Pub Co Pte Ltd

Subject

Computer Networks and Communications,General Medicine

Cited by 17 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3