Semi-Supervised Semantic Image Segmentation by Deep Diffusion Models and Generative Adversarial Networks

Author:

Díaz-Francés José Ángel1ORCID,Fernández-Rodríguez José David1ORCID,Thurnhofer-Hemsi Karl1ORCID,López-Rubio Ezequiel1ORCID

Affiliation:

1. ITIS Software, University of Málaga, Calle Arquitecto Francisco Peñalosa 18, Málaga 29010, Spain

Abstract

Typically, deep learning models for image segmentation tasks are trained using large datasets of images annotated at the pixel level, which can be expensive and highly time-consuming. A way to reduce the amount of annotated images required for training is to adopt a semi-supervised approach. In this regard, generative deep learning models, concretely Generative Adversarial Networks (GANs), have been adapted to semi-supervised training of segmentation tasks. This work proposes MaskGDM, a deep learning architecture combining some ideas from EditGAN, a GAN that jointly models images and their segmentations, together with a generative diffusion model. With careful integration, we find that using a generative diffusion model can improve EditGAN performance results in multiple segmentation datasets, both multi-class and with binary labels. According to the quantitative results obtained, the proposed model improves multi-class image segmentation when compared to the EditGAN and DatasetGAN models, respectively, by [Formula: see text] and [Formula: see text]. Moreover, using the ISIC dataset, our proposal improves the results from other models by up to [Formula: see text] for the binary image segmentation approach.

Funder

The Autonomous Government of Andalusia

The Ministry of Science and Innovation of Spain

the University of Málaga

Detection of coronary stenosis using deep learning applied to coronary angiography

Intelligent Clinical Decision Support System for NonObstructive Coronary Artery Disease in Coronarographies

Detección de trayectorias anómalas de vehículos en cámaras de tráfico

Sistema de Videovigilancia basado en cámaras itinerantes robotizadas

NVIDIA Corporation with the donation of a RTX

Publisher

World Scientific Pub Co Pte Ltd

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3