From Intricacy to Conciseness: A Progressive Transfer Strategy for EEG-Based Cross-Subject Emotion Recognition

Author:

Cai Ziliang1,Wang Lingyue1,Guo Miaomiao1,Xu Guizhi1,Guo Lei1,Li Ying1

Affiliation:

1. State Key Laboratory of Reliability and Intelligence of Electrical Equipment, Hebei University of Technology, Tianjin 300401, P. R. China

Abstract

Emotion plays a significant role in human daily activities, and it can be effectively recognized from EEG signals. However, individual variability limits the generalization of emotion classifiers across subjects. Domain adaptation (DA) is a reliable method to solve the issue. Due to the nonstationarity of EEG, the inferior-quality source domain data bring negative transfer in DA procedures. To solve this problem, an auto-augmentation joint distribution adaptation (AA-JDA) method and a burden-lightened and source-preferred JDA (BLSP-JDA) approach are proposed in this paper. The methods are based on a novel transfer idea, learning the specific knowledge of the target domain from the samples that are appropriate for transfer, which reduces the difficulty of transfer between two domains. On multiple emotion databases, our model shows state-of-the-art performance.

Funder

National Natural Science Foundation of China

Natural Science Foundation of Tianjin

Key Research and Development Project of Heibei

Publisher

World Scientific Pub Co Pte Ltd

Subject

Computer Networks and Communications,General Medicine

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3