Affiliation:
1. State Key Laboratory of Reliability and Intelligence of Electrical Equipment, Hebei University of Technology, Tianjin 300401, P. R. China
Abstract
Emotion plays a significant role in human daily activities, and it can be effectively recognized from EEG signals. However, individual variability limits the generalization of emotion classifiers across subjects. Domain adaptation (DA) is a reliable method to solve the issue. Due to the nonstationarity of EEG, the inferior-quality source domain data bring negative transfer in DA procedures. To solve this problem, an auto-augmentation joint distribution adaptation (AA-JDA) method and a burden-lightened and source-preferred JDA (BLSP-JDA) approach are proposed in this paper. The methods are based on a novel transfer idea, learning the specific knowledge of the target domain from the samples that are appropriate for transfer, which reduces the difficulty of transfer between two domains. On multiple emotion databases, our model shows state-of-the-art performance.
Funder
National Natural Science Foundation of China
Natural Science Foundation of Tianjin
Key Research and Development Project of Heibei
Publisher
World Scientific Pub Co Pte Ltd
Subject
Computer Networks and Communications,General Medicine
Cited by
9 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献