Spatio-Temporal Image-Based Encoded Atlases for EEG Emotion Recognition

Author:

Avola Danilo1ORCID,Cinque Luigi1ORCID,Mambro Angelo Di1ORCID,Fagioli Alessio1ORCID,Marini Marco Raoul1ORCID,Pannone Daniele1ORCID,Fanini Bruno2ORCID,Foresti Gian Luca3ORCID

Affiliation:

1. Department of Computer Science, Sapienza University of Rome, Via Salaria 113, Rome 00198, Italy

2. Institute of Heritage Science, National Research Council, Area della Ricerca Roma 1, SP35d, 9, Montelibretti 00010, Italy

3. Department of Computer Science, Mathematics and Physics, University of Udine, Via delle Scienze 206, Udine 33100, Italy

Abstract

Emotion recognition plays an essential role in human–human interaction since it is a key to understanding the emotional states and reactions of human beings when they are subject to events and engagements in everyday life. Moving towards human–computer interaction, the study of emotions becomes fundamental because it is at the basis of the design of advanced systems to support a broad spectrum of application areas, including forensic, rehabilitative, educational, and many others. An effective method for discriminating emotions is based on ElectroEncephaloGraphy (EEG) data analysis, which is used as input for classification systems. Collecting brain signals on several channels and for a wide range of emotions produces cumbersome datasets that are hard to manage, transmit, and use in varied applications. In this context, the paper introduces the Empátheia system, which explores a different EEG representation by encoding EEG signals into images prior to their classification. In particular, the proposed system extracts spatio-temporal image encodings, or atlases, from EEG data through the Processing and transfeR of Interaction States and Mappings through Image-based eNcoding (PRISMIN) framework, thus obtaining a compact representation of the input signals. The atlases are then classified through the Empátheia architecture, which comprises branches based on convolutional, recurrent, and transformer models designed and tuned to capture the spatial and temporal aspects of emotions. Extensive experiments were conducted on the Shanghai Jiao Tong University (SJTU) Emotion EEG Dataset (SEED) public dataset, where the proposed system significantly reduced its size while retaining high performance. The results obtained highlight the effectiveness of the proposed approach and suggest new avenues for data representation in emotion recognition from EEG signals.

Funder

the Italian Ministry of Defence within the PNRM 2020 Program

“A Brain–Computer Interface (BCI)-based System for Transferring Human Emotions inside Unmanned Aerial Vehicles (UAVs)” Sapienza University Research Projects

the Italian Ministry of Defence

the Italian Ministry of Universities and Research (MUR) within the PRIN 2022 Program

Publisher

World Scientific Pub Co Pte Ltd

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3