Towards Artificial Speech Therapy: A Neural System for Impaired Speech Segmentation

Author:

Iliya Sunday1,Neri Ferrante12

Affiliation:

1. Centre for Computational Intelligence, School of Computer Science and Informatics, De Montfort University, The Gateway, Leicester LE1 9BH, England, UK

2. Department of Mathematical Information Technology, University of Jyväskylä Jyväskylä, Finland

Abstract

This paper presents a neural system-based technique for segmenting short impaired speech utterances into silent, unvoiced, and voiced sections. Moreover, the proposed technique identifies those points of the (voiced) speech where the spectrum becomes steady. The resulting technique thus aims at detecting that limited section of the speech which contains the information about the potential impairment of the speech. This section is of interest to the speech therapist as it corresponds to the possibly incorrect movements of speech organs (lower lip and tongue with respect to the vocal tract). Two segmentation models to detect and identify the various sections of the disordered (impaired) speech signals have been developed and compared. The first makes use of a combination of four artificial neural networks. The second is based on a support vector machine (SVM). The SVM has been trained by means of an ad hoc nested algorithm whose outer layer is a metaheuristic while the inner layer is a convex optimization algorithm. Several metaheuristics have been tested and compared leading to the conclusion that some variants of the compact differential evolution (CDE) algorithm appears to be well-suited to address this problem. Numerical results show that the SVM model with a radial basis function is capable of effective detection of the portion of speech that is of interest to a therapist. The best performance has been achieved when the system is trained by the nested algorithm whose outer layer is hybrid-population-based/CDE. A population-based approach displays the best performance for the isolation of silence/noise sections, and the detection of unvoiced sections. On the other hand, a compact approach appears to be clearly well-suited to detect the beginning of the steady state of the voiced signal. Both the proposed segmentation models display outperformed two modern segmentation techniques based on Gaussian mixture model and deep learning.

Publisher

World Scientific Pub Co Pte Lt

Subject

Computer Networks and Communications,General Medicine

Cited by 17 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3