Tangent Space Features-Based Transfer Learning Classification Model for Two-Class Motor Imagery Brain–Computer Interface

Author:

Gaur Pramod1,McCreadie Karl1,Pachori Ram Bilas2,Wang Hui3,Prasad Girijesh4

Affiliation:

1. Department of Computer Science & Engineering, The LNM Institute of Information Technology, Jaipur 302031, India

2. Discipline of Electrical Engineering, Indian Institute of Technology Indore, Indore 453552, Madhya Pradesh, India

3. Computer Science Research Institute, Ulster University, Jordanstown Campus, Newtownabbey, Antrim BT37 0QB, UK

4. Intelligent Systems Research Centre, Ulster University, Magee Campus, Derry/Londonderry, BT48 7JL, UK

Abstract

The performance of a brain–computer interface (BCI) will generally improve by increasing the volume of training data on which it is trained. However, a classifier’s generalization ability is often negatively affected when highly non-stationary data are collected across both sessions and subjects. The aim of this work is to reduce the long calibration time in BCI systems by proposing a transfer learning model which can be used for evaluating unseen single trials for a subject without the need for training session data. A method is proposed which combines a generalization of the previously proposed subject-specific “multivariate empirical-mode decomposition” preprocessing technique by taking a fixed band of 8–30[Formula: see text]Hz for all four motor imagery tasks and a novel classification model which exploits the structure of tangent space features drawn from the Riemannian geometry framework, that is shared among the training data of multiple sessions and subjects. Results demonstrate comparable performance improvement across multiple subjects without subject-specific calibration, when compared with other state-of-the-art techniques.

Funder

the Northern Ireland Functional Brain Mapping Facility

the Northern Ireland Functional BrainMapping Facility

the UKIERI DST Thematic Partnership

Publisher

World Scientific Pub Co Pte Lt

Subject

Computer Networks and Communications,General Medicine

Cited by 64 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3