A Parallel Convolutional Network Based on Spiking Neural Systems

Author:

Zhou Chi1ORCID,Ye Lulin1ORCID,Peng Hong1ORCID,Liu Zhicai1ORCID,Wang Jun2ORCID,Ramírez-De-Arellano Antonio3ORCID

Affiliation:

1. School of Computer and Software Engineering, Xihua University, Chengdu 610039, P. R. China

2. School of Electrical Engineering and Electronic Information, Xihua University, Chengdu 610039, P. R. China

3. Research Group of Natural Computing, Department of Computer Science and Artificial Intelligence, University of Seville, Sevilla 41012, Spain

Abstract

Deep convolutional neural networks have shown advanced performance in accurately segmenting images. In this paper, an SNP-like convolutional neuron structure is introduced, abstracted from the nonlinear mechanism in nonlinear spiking neural P (NSNP) systems. Then, a U-shaped convolutional neural network named SNP-like parallel-convolutional network, or SPC-Net, is constructed for segmentation tasks. The dual-convolution concatenate (DCC) and dual-convolution addition (DCA) network blocks are designed, respectively, in the encoder and decoder stages. The two blocks employ parallel convolution with different kernel sizes to improve feature representation ability and make full use of spatial detail information. Meanwhile, different feature fusion strategies are used to fuse their features to achieve feature complementarity and augmentation. Furthermore, a dual-scale pooling (DSP) module in the bottleneck is designed to improve the feature extraction capability, which can extract multi-scale contextual information and reduce information loss while extracting salient features. The SPC-Net is applied in medical image segmentation tasks and is compared with several recent segmentation methods on the GlaS and CRAG datasets. The proposed SPC-Net achieves 90.77% DICE coefficient, 83.76% IoU score and 83.93% F1 score, 86.33% ObjDice coefficient, 135.60 Obj-Hausdorff distance, respectively. The experimental results show that the proposed model can achieve good segmentation performance.

Funder

the National Natural Science Foundation of China

the Research Fund of Sichuan Science and Technology Project

the Zhejiang Lab BioBit Program

Publisher

World Scientific Pub Co Pte Ltd

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3