SPIKING NEURAL NETWORKS

Author:

GHOSH-DASTIDAR SAMANWOY1,ADELI HOJJAT2

Affiliation:

1. Department of Biomedical Engineering, The Ohio State University, USA

2. Departments of Biomedical Engineering, Biomedical Informatics, Civil and Environmental Engineering and Geodetic Science, Electrical and Computer Engineering, Neurological Surgery and Neuroscience, The Ohio State University, 470 Hitchcock Hall, 2070 Neil Avenue, Columbus, Ohio 43210, USA

Abstract

Most current Artificial Neural Network (ANN) models are based on highly simplified brain dynamics. They have been used as powerful computational tools to solve complex pattern recognition, function estimation, and classification problems. ANNs have been evolving towards more powerful and more biologically realistic models. In the past decade, Spiking Neural Networks (SNNs) have been developed which comprise of spiking neurons. Information transfer in these neurons mimics the information transfer in biological neurons, i.e., via the precise timing of spikes or a sequence of spikes. To facilitate learning in such networks, new learning algorithms based on varying degrees of biological plausibility have also been developed recently. Addition of the temporal dimension for information encoding in SNNs yields new insight into the dynamics of the human brain and could result in compact representations of large neural networks. As such, SNNs have great potential for solving complicated time-dependent pattern recognition problems because of their inherent dynamic representation. This article presents a state-of-the-art review of the development of spiking neurons and SNNs, and provides insight into their evolution as the third generation neural networks.

Publisher

World Scientific Pub Co Pte Lt

Subject

Computer Networks and Communications,General Medicine

Cited by 639 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3