Alzheimer's Disease: Models of Computation and Analysis of EEGs

Author:

Adeli Hojjat1,Ghosh-Dastidar Samanwoy2,Dadmehr Nahid3

Affiliation:

1. Department of Biomedical Informatics, Department of Civil and Environmental Engineering and Geodetic Science, Department of Electrical and Computer Engineering, Department of Neuroscience, Center for Biomedical Engineering, The Ohio State University;

2. Center for Biomedical Engineering

3. Department of Neurology, The Ohio State University, Columbus, Ohio

Abstract

In a recent article the authors presented a comprehensive review of research performed on computational modeling of Alzheimer's disease (AD) and its markers with a focus on computer imaging, classification models, connectionist neural models, and biophysical neural models. The popularity of imaging techniques for detection and diagnosis of possible AD stems from the relative ease with which neurological markers can be converted to visual markers. However, due to the expense of specialized experts and equipment involved in the use of imaging techniques, a subject of significant research interest is detecting markers in EEGs obtained from AD patients. In this article, the authors present a state-of-the-art review of models of computation and analysis of EEGs for diagnosis and detection of AD. This review covers three areas: time-frequency analysis, wavelet analysis, and chaos analysis. The vast number of physiological parameters involved in the poorly understood processes responsible for AD yields a large combination of parameters that can be manipulated and studied. A combination of parameters from different investigation modalities seems to be more effective in increasing the accuracy of detection and diagnosis.

Publisher

SAGE Publications

Subject

Clinical Neurology,Neurology,General Medicine

Cited by 115 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3