Affiliation:
1. Engineering Research Center of IoT Technology, Applications Ministry of Education, Jiangnan University, Wuxi 214122, China
Abstract
This paper considers many-objective flexible job shop scheduling problem (MaOFJSP) in which the number of optimization problems is larger than three. An integrated multi-objective optimization method is proposed which contains both optimization and decision making. The non-dominated sorting genetic algorithm III (NSGA-III) is utilized to find a trade-off solution set by simultaneously optimizing six objectives including makespan, workload balance, mean of earliness and tardiness, cost, quality, and energy consumption. Then, an integrated multi-attribute decision-making method is introduced to select one solution that fits into the decision maker’s preference. NSGA-III is compared with three multi-objective evolutionary algorithms (MOEAs)-based scheduling methods, and the simulation results show that NSGA-III performs better in generating the Pareto solutions. In addition, the impacts of using different reference points and decoding methods are investigated.
Publisher
World Scientific Pub Co Pte Lt
Subject
Condensed Matter Physics,Statistical and Nonlinear Physics
Cited by
7 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献