An Improved Multi-Objective Optimization Decision Method Using NSGA-III for a Bivariate Precision Fertilizer Applicator

Author:

Dang Yugong,Ma Hongen,Wang Jun,Zhou Zhigang,Xu Zhidong

Abstract

In order to boost the performance of a bivariable granular fertilizer applicator and simplify the control methodology of fertilization rate regulation, this paper proposed a fertilization decision method to obtain the optimal combination of rotational speed and opening length by selecting the accuracy, uniformity, adjustment time, and breakage rate as the optimization objectives. We processed the outlier data collected using the indoor bench test, segmented the data with the fertilization growth rate as the index, and proved the rationality of the data segmentation by an independent sample t-test. SVM, BPNN, ELM, and RVM were used to train the two data sections to create the fertilization rate prediction model, and the models with the highest accuracy in the two data sections were selected for the assembly of the final prediction model used to describe the fertilization process of the bivariate fertilizer applicator. Moreover, the fertilization performance problem model was established with the objectives of accuracy, uniformity, adjustment time, and breakage rate and was solved using the NSGA-III algorithm to gain an optimal fertilization decision. Compared with GA and MOEA-D-DE methods, the results show that, using the new method, the average relative error declines from 8.64% and 6.05% to 3.09%, and the average coefficient of variation reduces from 6.67% and 6.81% to 6.41%, respectively. In addition, the adjustment time lowers from 2.01 s and 1.33 s to 0.78 s, and the average breakage rate drops from 1.084% and 0.845% to 0.803%, respectively. It is indicated that the presented method offers the most notable improvements in accuracy and adjustment time, while the advancements in regard to uniformity and breakage rate is slight, but both are within a reasonable range.

Funder

Program for Science & Technology Innovation Talents in Universities of Henan Province

Publisher

MDPI AG

Subject

Plant Science,Agronomy and Crop Science,Food Science

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3