Affiliation:
1. Applied Research Laboratories, University of Texas at Austin, Austin, Texas 78758, USA
Abstract
Three-dimensional propagation over an infinitely long cosine shaped hill is examined using an approximate normal mode/parabolic equation hybrid model that includes mode coupling in the out-going direction. The slope of the hill is relatively shallow, but it is significant enough to produce both mode-coupling and horizontal refraction effects. In the first part of the paper, the modeling approach is described, and the solution is compared to results obtained with a finite element method to evaluate the accuracy of the solution in light of assumptions made in formulating the model. Then the calculated transmission loss is interpreted in terms of a modal decomposition of the field, and the solution from the hybrid model is compared to adiabatic and N × 2D solutions to assess the relative importance of horizontal refraction and mode-coupling effects. An analysis using a horizontal ray trace is presented to explain differences in the modal interference pattern observed between the 3D and N × 2D solutions. The detailed discussion provides a thorough explanation of the observed 3D propagation effects and demonstrates the usefulness of the approximate normal mode/parabolic equation hybrid model as a tool to understand measured transmission loss in complex environments.
Publisher
World Scientific Pub Co Pte Lt
Subject
Applied Mathematics,Acoustics and Ultrasonics
Cited by
13 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献