EXPERIMENTAL EVIDENCE OF HORIZONTAL REFRACTION BY NONLINEAR INTERNAL WAVES OF ELEVATION IN SHALLOW WATER IN THE SOUTH CHINA SEA: 3D VERSUS Nx2D ACOUSTIC PROPAGATION MODELING

Author:

REEDER D. BENJAMIN1,CHIU LINUS Y. S.2,CHEN CHI-FANG2

Affiliation:

1. Department of Oceanography, Naval Postgraduate School, Monterey, CA, USA

2. Department of Engineering Science and Ocean Engineering, National Taiwan University, Taipei, 106, Taiwan, R. O. C

Abstract

A joint Taiwanese-U.S. field experiment was conducted in the South China Sea (SCS), entitled the South China Sea Oceanic Processes Experiment (Taiwan)/Non-Linear Internal Waves Initiative (US) (SCOPE/NLIWI), the ocean acoustics portion of which occurred during April 12–22, 2007. The acoustics objective was to quantify the temporal and spatial variability in acoustic propagation characteristics on the continental shelf in the presence of locally-generated and trans-basin nonlinear internal waves (NLIW). Broadband (400 Hz center frequency) m-sequence signals transmitted nearly continuously by a source moored near the seabed were received by vertical line arrays at 3 and 6 km range. The acoustic transect was oriented approximately parallel to the wave fronts of the shoaling trans-basin NLIW's which had crossed the deep basin from their origin in the Luzon Strait. The acoustic propagation variability due to strong vertical and horizontal refraction induced by the very large NLIW's creates an extremely complex acoustic field as a function of time and space. Experimental data and numerical acoustic propagation modeling results are presented to (1) examine and estimate the contribution of internal wave induced horizontal refraction to the received acoustic field; and (2) to quantify the range of propagation angles relative to the internal wave fronts within which strong horizontal refraction occurs and 3D propagation models are required to accurately predict the range- and depth-dependent acoustic propagation.

Publisher

World Scientific Pub Co Pte Lt

Subject

Applied Mathematics,Acoustics and Ultrasonics

Cited by 15 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3