Fabrication of β-glucosidase–Copper Phosphate Hybrid Nanoflowers for Bioconversion of Geniposide into Gardenia Blue

Author:

Saranik Mahmoud M.1,Badawy Mohamed A.1,Farahat Mohamed G.23

Affiliation:

1. Chemistry Department, Faculty of Science, Cairo University, Giza 12613, Egypt

2. Botany and Microbiology Department, Faculty of Science, Cairo University, Giza 12613, Egypt

3. Faculty Biotechnology Department, Faculty of Nanotechnology for Postgraduate Studies, Cairo University, Sheikh Zayed Branch Campus, Giza 12588, Egypt

Abstract

Gardenia blue (GB) is a natural pigment widely used in textiles and food industries as an eco-friendly alternative to synthetic dyes owing to its safety, biocompatibility and chemical stability. Herein we demonstrated a recyclable, reusable and efficient catalysis system for the biosynthesis of GB from geniposide using [Formula: see text]-glucosidase embedded in copper phosphate hybrid nanoflowers. In this study, a promising [Formula: see text]-glucosidase-secreting actinomycete was isolated and identified as Streptomyces variabilis BGPA1. The secreted enzyme was successfully immobilized in nanoflowers as evidenced by scanning electron microscopy (SEM) and Fourier-transform infrared spectroscopy (FTIR) analysis. Results revealed the functionality of the prepared nanoflowers for the bioconversion of geniposide into genipin which interacts with glycine yielding the blue pigment. The optimum pH and temperature for the bioconversion were found to be 6.0 and 50C, respectively. Interestingly, the prepared [Formula: see text]-glucosidase–copper phosphate hybrid nanoflowers retained up to 94% of their initial activity after 15 cycles of repeated usage, indicating the remarkable recyclability and reusability of the biocatalytic system. This study suggests that [Formula: see text]-glucosidase–copper phosphate hybrid nanoflowers could be used as a potential candidate for the facile eco-friendly production of GB.

Publisher

World Scientific Pub Co Pte Ltd

Subject

Electrical and Electronic Engineering,Computer Science Applications,Condensed Matter Physics,General Materials Science,Bioengineering,Biotechnology

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3