LEARNING TO BEHAVE IN SPACE: A QUALITATIVE SPATIAL REPRESENTATION FOR ROBOT NAVIGATION WITH REINFORCEMENT LEARNING

Author:

FROMMBERGER LUTZ1

Affiliation:

1. SFB/TR8 Spatial Cognition, Project R3-[Q-Shape], Universität Bremen, Enrique-Schmidt-Str. 5, 28359 Bremen, Germany

Abstract

The representation of the surrounding world plays an important role in robot navigation, especially when reinforcement learning is applied. This work uses a qualitative abstraction mechanism to create a representation of space consisting of the circular order of detected landmarks and the relative position of walls towards the agent's moving direction. The use of this representation does not only empower the agent to learn a certain goal-directed navigation strategy faster compared to metrical representations, but also facilitates reusing structural knowledge of the world at different locations within the same environment. Acquired policies are also applicable in scenarios with different metrics and corridor angles. Furthermore, gained structural knowledge can be separated, leading to a generally sensible navigation behavior that can be transferred to environments lacking landmark information and/or totally unknown environments.

Publisher

World Scientific Pub Co Pte Lt

Subject

Artificial Intelligence,Artificial Intelligence

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3