Affiliation:
1. SFB/TR8 Spatial Cognition, Project R3-[Q-Shape], Universität Bremen, Enrique-Schmidt-Str. 5, 28359 Bremen, Germany
Abstract
The representation of the surrounding world plays an important role in robot navigation, especially when reinforcement learning is applied. This work uses a qualitative abstraction mechanism to create a representation of space consisting of the circular order of detected landmarks and the relative position of walls towards the agent's moving direction. The use of this representation does not only empower the agent to learn a certain goal-directed navigation strategy faster compared to metrical representations, but also facilitates reusing structural knowledge of the world at different locations within the same environment. Acquired policies are also applicable in scenarios with different metrics and corridor angles. Furthermore, gained structural knowledge can be separated, leading to a generally sensible navigation behavior that can be transferred to environments lacking landmark information and/or totally unknown environments.
Publisher
World Scientific Pub Co Pte Lt
Subject
Artificial Intelligence,Artificial Intelligence
Cited by
10 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献