Structural knowledge transfer by spatial abstraction for reinforcement learning agents

Author:

Frommberger Lutz1,Wolter Diedrich2

Affiliation:

1. SFB/TR 8 Spatial Cognition, University of Bremen, Germany,

2. SFB/TR 8 Spatial Cognition, University of Bremen, Germany

Abstract

In this article we investigate the role of abstraction principles for knowledge transfer in agent control learning tasks. We analyze abstraction from a formal point of view and characterize three distinct facets: aspectualization, coarsening, and conceptual classification. The taxonomy we develop allows us to interrelate existing approaches to abstraction, leading to a code of practice for designing knowledge representations that support knowledge transfer. We detail how aspectualization can be utilized to achieve knowledge transfer in reinforcement learning. We propose the use of so-called structure space aspectualizable knowledge representations that explicate structural properties of the state space and present a posteriori structure space aspectualization (APSST) as a method to extract generally sensible behavior from a learned policy. This new policy can be used for knowledge transfer to support learning new tasks in different environments. Finally, we present a case study that demonstrates transfer of generally sensible navigation skills from simple simulation to a real-world robotic platform.

Publisher

SAGE Publications

Subject

Behavioral Neuroscience,Experimental and Cognitive Psychology

Reference38 articles.

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3