ELECTRICAL RESISTANCE OF CRACK-FREE GaN/AlN HETEROSTRUCTURE GROWN ON Si(111)

Author:

CHUAH L. S.1,HASSAN Z.1,HASSAN H. ABU1

Affiliation:

1. Nano-Optoelectronics Research and Technology Laboratory, School of Physics, Universiti Sains Malaysia, 11800 Penang, Malaysia

Abstract

This paper presents the electrical resistance of crack-free n-GaN/AlN/n-Si(111) diodes in relation to the temperature of the Al effusion cell for the growth of AlN intermediate layer (348 nm thickness) using radio-frequency molecular beam epitaxy (RF-MBE). The thickness of the unintentionally doped n-type GaN thin film is in the range of 63–100 nm. Aluminium (300 nm thickness) was sputtered onto the n-type GaN through a metal mask, followed by the 100 nm thick titanium (Ti) capping layer to obtain an ohmic contact. The back contact was created on the back surface of the Si substrate by evaporating indium (In) followed by thermal annealing at 400°C. We will consider the above as a device on an n-type Si(111) substrate, where the electron current flows from the Si substrate to the n-type GaN top layer. It was found that the current–voltage (I–V) characteristics depend on the various deposition temperature of the Al effusion cell for the growth of the AlN intermediate layer. In the forward bias region, where the electrons flow from Si(111) to the GaN top layer, we observe a threshold voltage of approximately 0.5 V for turning on a high current. The order of differential resistance magnitude was nearly a constant in the voltage range of 1.0 to 3.0 V.

Publisher

World Scientific Pub Co Pte Lt

Subject

Physics and Astronomy (miscellaneous),Atomic and Molecular Physics, and Optics,Electronic, Optical and Magnetic Materials

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. GaN ON SILICON SUBSTRATE WITH AlN BUFFER LAYER FOR UV PHOTODIODE;Journal of Nonlinear Optical Physics & Materials;2012-03

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3