A Bidirectional Pounding Tuned Mass Damper and Its Application to Transmission Tower-Line Systems under Seismic Excitations

Author:

Tian Li1,Rong Kunjie1,Bi Kaiming2,Zhang Peng3

Affiliation:

1. School of Civil Engineering, Shandong University, Jinan, Shandong Province 250061, P. R. China

2. School of Civil and Mechanical Engineering, Curtin University, Kent Street, Bentley, Western Australia 6102, Australia

3. Transportation Equipment and Ocean Engineering College, Dalian Maritime University, Dalian 116026, P. R. China

Abstract

Failures of transmission tower-line systems have frequently occurred during large earthquakes. It is essential to control the excessive vibrations of transmission tower-line systems to ensure their safe operation in such events. This paper numerically investigates the effectiveness of using a novel bidirectional pounding tuned mass damper (BPTMD) to control the seismic responses of transmission tower-line system when subjected to earthquake ground motions. A finite element model of a typical transmission tower-line system with BPTMD is developed using the commercial software ABAQUS, with the accuracy of the results verified against a previous study. The seismic responses of the system with and without BPTMD are calculated. For comparison, the control effect of using the conventional bidirectional tuned mass damper is also calculated and discussed. Finally, a parametric study is performed to investigate the effects of the mass ratio, seismic intensity, gap size and frequency ratio on the seismic response of the system, while optimal design parameters are obtained.

Publisher

World Scientific Pub Co Pte Lt

Subject

Applied Mathematics,Mechanical Engineering,Ocean Engineering,Aerospace Engineering,Building and Construction,Civil and Structural Engineering

Cited by 19 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3