Affiliation:
1. Department of Disaster Mitigation for Structures, Tongji University, Shanghai 200092, P. R. China
2. State Key Laboratory of Disaster Reduction in Civil Engineering, Tongji University, Shanghai 200092, P. R. China
3. School of Materials Science and Engineering, Tongji University, Shanghai 201804, P. R. China
Abstract
This work proposes an enhanced particle inerter device (EPID) capable of significantly enhancing the vibration control effect (VCE) of a conventional particle tuned mass damper (PTMD). EPID, an inerter is coupled to the PTMD device, that is, the inerter is attached to the damper cavity on one end and to the ground on the other, mainly using its mass amplification effect. To accomplish the goal, the EPID’s mechanical model is established first. Then, the system’s governing equation is derived based on the single degree of freedom (SDOF) system, and the EPID’s effectiveness is verified via inputting seismic excitation. Finally, the parameter analysis and multi-objective optimization design are carried out for EPID, and the superiority of the proposed multi-objective optimization design method compared with the traditional design method is verified. The results indicate that EPID can effectively minimize the main structure’s displacement and acceleration response. In particular, under the El Centro wave’s excitation, the vibration reduction rate of the dynamic responses (peak response and root mean square response) is close to 50%, which is over 35% increasing compared to PTMD, and its VCE is better for excitation band changes. At the same time, it is found that the lower the damper’s auxiliary mass ratio, the more obvious the enhancement of the inerter system’s VCE is, which brings about the lightweight design of the high-control effect of PTMD.
Funder
National Natural Science Foundation of China
Program of Shanghai Academic Research Leader
Top Discipline Plan of Shanghai Universities-Class I
Publisher
World Scientific Pub Co Pte Ltd
Subject
Applied Mathematics,Mechanical Engineering,Ocean Engineering,Aerospace Engineering,Building and Construction,Civil and Structural Engineering
Cited by
8 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献