Affiliation:
1. Department of Civil Engineering, National Institute of Technology, Rourkela, Odisha 769008, India
Abstract
The dynamic stability of bidirectional woven fiber laminated glass/epoxy composite shallow shells subjected to harmonic in-plane loading in hygrothermal environment is considered. An eight-noded isoparametric shell element with five degrees of freedom is used in the analysis. In the present finite element formulation, a composite doubly curved shell model based on first-order shear deformation theory (FSDT) is used for the dynamic stability analysis of shell panels subjected to hygrothermal loading. A program is developed using MATLAB for the parametric study on the dynamic stability of shell panels under the hygrothermal field. The effects of various parameters like static load factor, curvature, shallowness, temperature, moisture, stacking sequence and boundary conditions on the dynamic instability regions of woven fiber glass/epoxy shell panels are investigated. The location of dynamic instability regions is shown to affect significantly due to presence of the hygrothermal field.
Publisher
World Scientific Pub Co Pte Lt
Subject
Applied Mathematics,Mechanical Engineering,Ocean Engineering,Aerospace Engineering,Building and Construction,Civil and Structural Engineering
Cited by
16 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献