Buckling and Post-Buckling of Bidirectional Porous Beam Under Bidirectional Hygrothermal Environment

Author:

Zhang Qiao1,Sun Yuxin1

Affiliation:

1. Institute of Solid Mechanics, School of Aeronautic Science and Engineering, Beihang University, Beijing 100191, P. R. China

Abstract

In this paper, buckling and nonlinear post-buckling behaviors of a bidirectional porous (BDP) beam are investigated under bidirectional hygrothermal environment. Euler–Bernoulli beam theory with the von Kármán nonlinearity is employed to derive the nonlinear variable coefficient governing differential equations based on Rayleigh quotient method. Analytical solutions of critical buckling load and load–deflection equilibrium path in post-buckling are deduced for the single directional varying (SDV) porous beam. The general numerical solutions for bidirectional varying (BDV) porous beam are obtained by differential quadrature finite element method (DQFEM) with Newton–Raphson iteration method based on the variation principle. The high accuracy of the present numerical method with higher computing efficiency is verified by comparison with published reports and the analytical results in this work. Parametric analysis on effects of the porosity bidirectional distributions, porosity coefficients, distributions of hygrothermal environment and boundary conditions on buckling load and post-buckling response is carried out to enhance the buckling and deformation resistances in design, manufacture and usage of porous structures. The results show that the bidirectional porosity pattern, linear and nonlinear hygrothermal distribution and boundary conditions play a significant role on buckling critical external load and critical hygrothermal increments, buckling form and post-buckling path.

Funder

National Natural Science Foundation of China

Publisher

World Scientific Pub Co Pte Ltd

Subject

Applied Mathematics,Mechanical Engineering,Ocean Engineering,Aerospace Engineering,Building and Construction,Civil and Structural Engineering

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3