Research Advances in the Dynamic Stability Behavior of Plates and Shells: 1987–2005—Part I: Conservative Systems

Author:

Sahu S. K.1,Datta P. K.2

Affiliation:

1. Department of Civil Engineering, NIT, Rourkela 769008, India

2. Department of Aerospace Engineering, IIT, Kharagpur 721302, India

Abstract

This paper reviews most of the recent research done in the field of dynamic stability/dynamic instability/parametric excitation/parametric resonance characteristics of structures with special attention to parametric excitation of plate and shell structures. The solution of dynamic stability problems involves derivation of the equation of motion, discretization, and determination of dynamic instability regions of the structures. The purpose of this study is to review most of the recent research on dynamic stability in terms of the geometry (plates, cylindrical, spherical, and conical shells), type of loading (uniaxial uniform, patch, point loading …), boundary conditions (SSSS, SCSC, CCCC …), method of analysis (exact, finite strip, finite difference, finite element, differential quadrature, and experimental …), method of determination of dynamic instability regions (Lyapunovian, perturbation, and Floquet’s methods), order of theory being applied (thin, thick, three-dimensional, nonlinear …), shell theory used (Sanders’, Love’s and Donnell’s), materials of structures (homogeneous, bimodulus, composite, FGM …), and the various complicating effects such as geometrical discontinuity, elastic support, added mass, fluid structure interactions, nonconservative loading and twisting, etc. The important effects on dynamic stability of structures under periodic loading have been identified and influences of various important parameters are discussed. A review of the subject for nonconservative systems in detail will be presented in Part 2. This review paper cites 156 references.

Publisher

ASME International

Subject

Mechanical Engineering

Reference156 articles.

1. On a Peculiar Class of Acoustical Figures, and on Certain Forms Assumed by a Group of Particles Upon Vibrating Elastic Surfaces;Faraday;Philos. Trans. R. Soc. London

2. On the Crispations of Fluid Resting Upon a Vibrating Support;Rayleigh;Philos. Mag.

3. On the Parametric Response of Structures;Ewan-Iwanowski;Appl. Mech. Rev.

4. Parametric Vibration, Part-III, Current Problems (1);Ibrahim;Shock Vib. Dig.

Cited by 92 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3