Adaptively Controlled Dynamical Behavior of Sensory Systems Based on Mechanoreceptors

Author:

Siedler Konrad1,Behn Carsten1

Affiliation:

1. Technical Mechanics Group, Department of Mechanical Engineering, Technische Universität Ilmenau, Max-Planck-Ring 12 (Werner-Bischoff-Buildung), Ilmenau 98693, Germany

Abstract

This paper presents results on adaptive control strategies for a sensory system to identify (unknown) ground excitations which force the sensor and its seismic masses, so that acting forces can be measured and identified. The sensor system is modeled as a spring-mass-damper system within a rigid frame with two degrees-of-freedom. The seismic masses are under the load of internal control forces, which shall ensure stabilization of the mass point rest positions despite the continuing ground excitations. Using these (measured) resulting regulating forces, we are able to identify the excitation force. The control strategies are designed referring to the natural behavior of mechanoreceptors from biology. These are able to adapt their sensitivity to the environment, so that they filter the important information out of the flood of information. Mimicking this behavior, adaptive control strategies are used with time-varying controller gains. In this way, we are able to design controllers which are still sensitive while a constant stimuli affects. So new incoming information can be identified with a high quality. Further on, the sensor has to be universal and shall consume less energy as possible. Therefore, control strategies from literature are analyzed and modified, so that the most effective ones are used for the sensor system in this paper. Finally, the best working control strategies are tested for both their long-term behavior to an excitation which simulates different situations and for their response to different system parameters, chosen randomly.

Publisher

World Scientific Pub Co Pte Lt

Subject

Applied Mathematics,Mechanical Engineering,Ocean Engineering,Aerospace Engineering,Building and Construction,Civil and Structural Engineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3