On the singular Weinstein conjecture and the existence of escape orbits for b-Beltrami fields

Author:

Miranda Eva123,Oms Cédric4,Peralta-Salas Daniel5

Affiliation:

1. Laboratory of Geometry and Dynamical Systems and, Institut de Matemátiques de la UPC-BarcelonaTech (IMTech), Universitat Politècnica de Catalunya, Avinguda del Doctor Marañon 44-50, 08028 Barcelona, Spain

2. CRM Centre de Recerca Matemàtica Campus UAB Edifici C, 08193 Bellaterra, Barcelona, Spain

3. IMCCE, CNRS-UMR8028, Observatoire de Paris, PSL University, Sorbonne Université, 77 Avenue Denfert-Rochereau, 75014 Paris, France

4. Laboratory of Geometry and Dynamical Systems, Department of Mathematics, EPSEB, Universitat Politècnica de Catalunya, Barcelona, Spain

5. Instituto de Ciencias Matemáticas, Consejo Superior de Investigaciones Científicas, Campus Cantoblanco UAM, C/ Nicolás Cabrera, 13–15, 28049 Madrid, Spain

Abstract

Motivated by Poincaré’s orbits going to infinity in the (restricted) three-body problem [see H. Poincaré, Les Méthodes Nouvelles de la Mécanique Céleste, Vol. 3 (Gauthier-Villars, 1899) and A. Chenciner, Poincaré and the three-body problem, in Henri Poincaré, 1912–2012 (Birkhäuser, Basel, 2015), pp. 51–149], we investigate the generic existence of heteroclinic-like orbits in a neighborhood of the critical set of a [Formula: see text]-contact form. This is done by using a singular counterpart [R. Cardona, E. Miranda and D. Peralta-Salas, Euler flows and singular geometric structures, Philos. Trans. R. Soc. A 377(2158) (2019) 20190034] of Etnyre–Ghrist’s contact/Beltrami correspondence [J. Etnyre and R. Ghrist, Contact topology and hydrodynamics: I. Beltrami fields and the Seifert conjecture, Nonlinearity 13(2) (2000) 441–458], and genericity results concerning eigenfunctions of the Laplacian established by Uhlenbeck [Generic properties of eigenfunctions, Amer. J. Math. 98(4) (1976) 1059–1078]. Specifically, we analyze the [Formula: see text]-Beltrami vector fields on [Formula: see text]-manifolds of dimension [Formula: see text] and prove that for a generic asymptotically exact [Formula: see text]-metric they exhibit escape orbits. We also show that a generic asymptotically symmetric [Formula: see text]-Beltrami vector field on an asymptotically flat [Formula: see text]-manifold has a generalized singular periodic orbit and at least four escape orbits. Generalized singular periodic orbits are trajectories of the vector field whose [Formula: see text]- and [Formula: see text]-limit sets intersect the critical surface. These results are a first step towards proving the singular Weinstein conjecture.

Funder

ICMAT-Severo Ochoa

Publisher

World Scientific Pub Co Pte Ltd

Subject

Applied Mathematics,General Mathematics

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. The Arnold conjecture for singular symplectic manifolds;Journal of Fixed Point Theory and Applications;2024-04-18

2. An equivariant Reeb–Beltrami correspondence and the Kepler–Euler flow;Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences;2024-01

3. Contact structures with singularities: From local to global;Journal of Geometry and Physics;2023-10

4. b-Contact structures on tentacular hyperboloids;Journal of Geometry and Physics;2023-09

5. Chaos from Symmetry: Navier Stokes Equations, Beltrami Fields and the Universal Classifying Crystallographic Group;Journal of Geometry and Physics;2023-09

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3