Euler flows and singular geometric structures

Author:

Cardona Robert1,Miranda Eva123ORCID,Peralta-Salas Daniel3

Affiliation:

1. Laboratory of Geometry and Dynamical Systems, Department of Mathematics, EPSEB, Universitat Politècnica de Catalunya BGSMath Barcelona Graduate School of Mathematics in Barcelona, Barcelona, Spain

2. IMCCE, CNRS-UMR8028, Observatoire de Paris, PSL University, Sorbonne Université, 77 Avenue Denfert-Rochereau, 75014 Paris, France

3. Instituto de Ciencias Matemáticas-ICMAT, C/ Nicolás Cabrera, n 13-15 Campus de Cantoblanco, Universidad Autónoma de Madrid, 28049 Madrid, Spain

Abstract

Tichler proved (Tischler D. 1970 Topology 9 , 153–154. ( doi:10.1016/0040-9383(70)90037-6 )) that a manifold admitting a smooth non-vanishing and closed one-form fibres over a circle. More generally, a manifold admitting k -independent closed one-form fibres over a torus T k . In this article, we explain a version of this construction for manifolds with boundary using the techniques of b -calculus (Melrose R. 1993 The Atiyah Patodi Singer index theorem . Research Notes in Mathematics. Wellesley, MA: A. K. Peters; Guillemin V, Miranda E, Pires AR. 2014 Adv. Math. ( N. Y. ) 264 , 864–896. ( doi:10.1016/j.aim.2014.07.032 )). We explore new applications of this idea to fluid dynamics and more concretely in the study of stationary solutions of the Euler equations. In the study of Euler flows on manifolds, two dichotomic situations appear. For the first one, in which the Bernoulli function is not constant, we provide a new proof of Arnold's structure theorem and describe b -symplectic structures on some of the singular sets of the Bernoulli function. When the Bernoulli function is constant, a correspondence between contact structures with singularities (Miranda E, Oms C. 2018 Contact structures with singularities. https://arxiv.org/abs/1806.05638 ) and what we call b -Beltrami fields is established, thus mimicking the classical correspondence between Beltrami fields and contact structures (see for instance Etnyre J, Ghrist R. 2000 Trans. Am. Math. Soc. 352 , 5781–5794. ( doi:10.1090/S0002-9947-00-02651-9 )). These results provide a new technique to analyse the geometry of steady fluid flows on non-compact manifolds with cylindrical ends. This article is part of the theme issue ‘Topological and geometrical aspects of mass and vortex dynamics’.

Funder

AGAUR

ERC

MTM

ICMAT–Severo Ochoa

National Science Foundation

Publisher

The Royal Society

Subject

General Physics and Astronomy,General Engineering,General Mathematics

Cited by 12 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3