An equivariant Reeb–Beltrami correspondence and the Kepler–Euler flow

Author:

Fontana-McNally Josep1ORCID,Miranda Eva23ORCID,Peralta-Salas Daniel4

Affiliation:

1. Laboratory of Geometry and Dynamical Systems, Department of Mathematics, Universitat Politècnica de Catalunya, Barcelona, Spain

2. Laboratory of Geometry and Dynamical Systems and IMTech, Department of Mathematics, Universitat Politècnica de Catalunya, Barcelona, Spain

3. Centre de Recerca Matemàtica, CRM, Barcelona, Spain

4. Instituto de Ciencias Matemáticas, Consejo Superior de Investigaciones Científicas, 28049 Madrid, Spain

Abstract

We prove that the correspondence between Reeb and Beltrami vector fields presented in Etnyre & Ghrist (Etnyre, Ghrist 2000 Nonlinearity 13 , 441–458 ( doi:10.1088/0951-7715/13/2/306 )) can be made equivariant whenever additional symmetries of the underlying geometric structures are considered. As a corollary of this correspondence, we show that energy levels above the maximum of the potential energy of mechanical Hamiltonian systems can be viewed as stationary fluid flows, though the metric is not prescribed. In particular, we showcase the emblematic example of the n -body problem and focus on the Kepler problem. We explicitly construct a compatible Riemannian metric that makes the Kepler problem of celestial mechanics a stationary fluid flow (of Beltrami type) on a suitable manifold, the Kepler–Euler flow .

Funder

Agència de Gestió d'Ajuts Universitaris i de Recerca

Agencia Estatal de Investigación

Fundación BBVA

Institució Catalana de Recerca i Estudis Avançats

Publisher

The Royal Society

Reference28 articles.

1. The Seiberg–Witten equations and the Weinstein conjecture

2. Sullivan D. 1994 Contact structures and ideal fluid motion. CUNY Einstein Chair Mathematics Seminar. See www.math.stonybrook.edu/Videos/Einstein/425-19941109-Sullivan.html.

3. Contact topology and hydrodynamics: I. Beltrami fields and the Seifert conjecture

4. Selected topics on the topology of ideal fluid flows

5. Contact topology and hydrodynamics III: knotted orbits

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3