Tracking Events in Twitter by Combining an LDA-Based Approach and a Density–Contour Clustering Approach

Author:

Zhang Yongli1,Eick Christoph F.1

Affiliation:

1. Department of Computer Science, University of Houston, Houston, TX 77204-3010, USA

Abstract

Nowadays, Twitter has become one of the fastest-growing microblogging services; consequently, analyzing this rich and continuously user-generated content can reveal unprecedentedly valuable knowledge. In this paper, we propose a novel two-stage system to detect and track events from tweets by integrating a Latent Dirichlet Allocation (LDA)-based approach and an efficient density–contour-based spatio-temporal clustering approach. In the proposed system, we first divide the geotagged tweet stream into temporal time windows; next, events are identified as topics in tweets using an LDA-based topic discovery step; then, each tweet is assigned an event label; next, a density–contour-based spatio-temporal clustering approach is employed to identify spatio-temporal event clusters. In our approach, topic continuity is established by calculating KL-divergences between topics and spatio-temporal continuity is established by a family of newly formulated spatial cluster distance functions. Moreover, the proposed density–contour clustering approach considers two types of densities: “absolute” density and “relative” density to identify event clusters where either there is a high density of event tweets or there is a high percentage of event tweets. We evaluate our approach using real-world data collected from Twitter, and the experimental results show that the proposed system can not only detect and track events effectively but also discover interesting patterns from geotagged tweets.

Publisher

World Scientific Pub Co Pte Lt

Subject

Artificial Intelligence,Computer Networks and Communications,Computer Science Applications,Linguistics and Language,Information Systems,Software

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3