Short text topic modelling approaches in the context of big data: taxonomy, survey, and analysis
Author:
Publisher
Springer Science and Business Media LLC
Subject
Artificial Intelligence,Linguistics and Language,Language and Linguistics
Link
https://link.springer.com/content/pdf/10.1007/s10462-022-10254-w.pdf
Reference291 articles.
1. Abdel-Hafez A, Yue Xu (2013) A survey of user modelling in social media websites. Comput Inf Sci 6(4):59–71. https://doi.org/10.5539/cis.v6n4p59
2. Abdulwahab HM, Ajitha S, Saif MAN (2022) Feature selection techniques in the context of big data: taxonomy and analysis. Appl Intell. https://doi.org/10.1007/s10489-021-03118-3
3. Abou-Of MA (2020) A fuzzy, incremental and semantic trending topic detection in social feeds. In: 2020 11th international conference on information and communication systems (ICICS). IEEE, pp 118–24
4. Ahmed A, Aly M, Gonzalez J, Narayanamurthy S, Smola AJ (2012) Scalable inference in latent variable models. In: Proceedings of the fifth ACM international conference on Web search and data mining—WSDM ’12. ACM Press, New York, pp 123–32
5. Aiello LM, Petkos G, Martin C, Corney D, Papadopoulos S, Skraba R, Goker A, Kompatsiaris I, Jaimes A (2013) Sensing trending topics in Twitter. IEEE Trans Multimed 15(6):1268–1282. https://doi.org/10.1109/TMM.2013.2265080
Cited by 26 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Leveraging spiking neural networks for topic modeling;Neural Networks;2024-10
2. Applying short text topic models to instant messaging communication of software developers;Journal of Systems and Software;2024-10
3. Data Collection and Analysis for Small-Town Policing: Challenges and Recommendations;Statistics and Public Policy;2024-08-29
4. Leveraging social media data for pandemic detection and prediction;Humanities and Social Sciences Communications;2024-08-23
5. Revolutionary text clustering: Investigating transfer learning capacity of SBERT models through pooling techniques;Engineering Science and Technology, an International Journal;2024-07
1.学者识别学者识别
2.学术分析学术分析
3.人才评估人才评估
"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370
www.globalauthorid.com
TOP
Copyright © 2019-2024 北京同舟云网络信息技术有限公司 京公网安备11010802033243号 京ICP备18003416号-3