MANEUVERING OF BIOMIMETIC FISH BY INTEGRATING A BUOYANCY BODY WITH MODULAR UNDULATING FINS

Author:

LOW K. H.1

Affiliation:

1. School of Mechanical and Aerospace Engineering, Nanyang Technological University, Singapore 639798, Republic of Singapore

Abstract

Biomimetic robots borrow their senses and structure from animals, such as insects, fishes, and human. Development of underwater vehicles is one of the areas where biomimetic robots can potentially perform better than conventional robots. In this paper, an undulating fin mechanism has been developed and used as the propulsion system of fish in various fin types. The layout and workspace of the modular fin segments are considered and analyzed. The relationship of the individual fin segment and phase angles with the overall fin trajectory is also discussed. A gymnotiform knifefish robot, as an example, has been developed to demonstrate the design methodology and prototype performance. The maneuvering and the buoyancy control can be achieved by the integration of a buoyancy tank with the undulating fin. Experiments were conducted in the laboratory tank and the variation of velocity with respect to several swimming parameters was analyzed. Field trials have also been conducted in an outdoor pool to demonstrate the swimming capability of the knifefish robot and its buoyancy performance in 4 m deep water.

Publisher

World Scientific Pub Co Pte Lt

Subject

Artificial Intelligence,Mechanical Engineering

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3